Upper bound for the largest Z-eigenvalue of positive tensors
نویسندگان
چکیده
منابع مشابه
A New Upper Bound on the Largest Normalized Laplacian Eigenvalue
Abstract. Let G be a simple undirected connected graph on n vertices. Suppose that the vertices of G are labelled 1,2, . . . ,n. Let di be the degree of the vertex i. The Randić matrix of G , denoted by R, is the n× n matrix whose (i, j)−entry is 1 √ did j if the vertices i and j are adjacent and 0 otherwise. The normalized Laplacian matrix of G is L = I−R, where I is the n× n identity matrix. ...
متن کاملA new S-type upper bound for the largest singular value of nonnegative rectangular tensors
By breaking [Formula: see text] into disjoint subsets S and its complement, a new S-type upper bound for the largest singular value of nonnegative rectangular tensors is given and proved to be better than some existing ones. Numerical examples are given to verify the theoretical results.
متن کاملA sharp upper bound on the largest Laplacian eigenvalue of weighted graphs
We consider weighted graphs, where the edge weights are positive definite matrices. The Laplacian of the graph is defined in the usual way. We obtain an upper bound on the largest eigenvalue of the Laplacian and characterize graphs for which the bound is attained. The classical bound of Anderson and Morley, for the largest eigenvalue of the Laplacian of an unweighted graph follows as a special ...
متن کاملA new Z-eigenvalue localization set for tensors
A new Z-eigenvalue localization set for tensors is given and proved to be tighter than those in the work of Wang et al. (Discrete Contin. Dyn. Syst., Ser. B 22(1):187-198, 2017). Based on this set, a sharper upper bound for the Z-spectral radius of weakly symmetric nonnegative tensors is obtained. Finally, numerical examples are given to verify the theoretical results.
متن کاملTwo S-type Z-eigenvalue inclusion sets for tensors
In this paper, we present two S-type Z-eigenvalue inclusion sets involved with a nonempty proper subset S of N for general tensors. It is shown that the new sets are tighter than those provided by Wang et al. (Discrete Contin. Dyn. Syst., Ser. B 22(1):187-198, 2017). Furthermore, we obtain upper bounds for the spectral radius of weakly symmetric nonnegative tensors, which are sharper than exist...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 2014
ISSN: 0893-9659
DOI: 10.1016/j.aml.2014.07.012